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Freedman (2008a,b) showed that the linear regression estimator is biased for the
analysis of randomized controlled trials under the randomization model. Under Freed-
man’s assumptions, we derive exact closed-form bias corrections for the linear regres-
sion estimator. We show that the limiting distribution of the bias corrected estimator
is identical to the uncorrected estimator. Taken together with results from Lin (2013),
our results show that Freedman’s theoretical arguments against the use of regression
adjustment can be resolved with minor modifications to practice.

KEYWORDS: Randomized experiments, design-based model, regression adjustment.

1. INTRODUCTION

RANDOMIZED CONTROLLED TRIALS (RCTS) are increasingly popular in the social sci-
ences. When estimating average treatment effects, adjustment for pretreatment covari-
ates with linear regression is a common practice because it can reduce the variability of
estimates. However, adjusting for covariates remains somewhat controversial, in large
part because of Freedman (2008a,b).

Freedman argued that randomization does not justify the use of linear regression for
completely randomized experiments. Freedman’s theoretical arguments relied on three
results under the randomization-based (Splawa-Neyman, Dabrowska, and Speed (1923),
Imbens and Rubin (2015)) inferential paradigm:

1. asymptotically, the linear regression estimator can be inefficient relative to the un-
adjusted (difference-in-means) estimator if the design is imbalanced;

2. the classical homoscedastic standard error for linear regression is not valid asymp-
totically;

3. the regression estimator has an Op(n−1) bias term.
Freedman’s third argument garnered attention among social scientists. For example,
Deaton and Cartwright (2018)’s critique of randomization in empirical economics argued
that the bias introduced by regression undermines the gold standard argument for RCTs.

In general, the literature has concluded that these issues are qualitatively small, at least
relative to broader concerns about power and the quantification of uncertainties in RCTs.
Using Freedman’s framework, Lin (2013) showed that arguments 1 and 2 were resolved
by small modifications to practice. Freedman’s efficiency result may be addressed simply
by including treatment by covariate interactions. Then it can be shown that the adjusted
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estimator is never less asymptotically efficient than the unadjusted estimator. Regarding
argument 2, Lin (2013) proved that robust standard errors (White (1980)) are asymp-
totically conservative in Freedman’s setting, guaranteeing the validity of large-sample in-
ference. On argument 3, Lin (2013) noted that the leading term of the bias is in fact
estimable and can be shown to be small in a real-world empirical example. However, the
small-sample bias of the regression estimator was not yet fully resolved.

Since Lin (2013), there have been notable papers that have proposed unbiased
regression-type estimators for experimental data. Miratrix, Sekhon, and Yu (2013)
demonstrated that if the regression model is fully saturated (see also Athey and Imbens
(2017) and Imbens (2010)), then the associated effect estimate is unbiased conditional on
the event that treatment is not collinear with any covariate stratum. This approach can-
not generally be used without coarsening continuous covariates. In addition, Tan (2014)
studied first-order bias corrections in the survey sampling setting. Lei and Ding (2021)
and Chiang, Matsushita, and Otsu (2023) studied bias corrections in a setting where the
number of covariates increases with the sample size.1

The primary contribution of this paper is to resolve Freedman’s third argument by
proposing finite-sample-exact, closed-form bias corrections. Our idea builds on Lin
(2013)’s proposal to estimate the leading term of the bias, but further develops a finite-
sample-exact bias correction encompassing all higher-order terms. We derive these bias
corrections for both the noninteracted and interacted linear regression estimators. We
prove that the estimators have the same limiting distributions as the non-bias-adjusted
estimators.

Finally, we remind the readers that the practice of debiasing estimators is not uncontro-
versial. Tibshirani and Efron (1993) have warned that the bias correction could have costs
in practice due to its high variability in finite samples.2 In real-world decision-making pro-
cesses, people may express different preferences for different statistical properties (i.e.,
unbiasedness or low Mean Squared Error). Our results shall imply that at least in large
samples, the additional variation caused by the bias correction is negligible.

The organization of the paper is as follows: Section 2 includes the model setup and as-
sumptions. Section 3 considers the characterization of bias terms of the OLS estimators
and proposes bias correction for the noninteracted ATE estimators. Section 4 considers
the case of the interacted estimators. In the Appendix, one can find proofs for the theo-
rems.

2. SETTING, ASSUMPTIONS, AND NOTATIONS

We follow the setting of Freedman (2008a), Lin (2013), Abadie, Athey, Imbens, and
Wooldridge (2020), and Lei and Ding (2021), which assume a Neyman model with covari-
ates (Splawa-Neyman, Dabrowska, and Speed (1923)). There are n subjects indexed by
i = 1� � � � � n. For each subject, we observe an outcome Yi and a column vector of covari-
ates xi = (xi1�xi2� � � � � xid)′ ∈ Rd .

Each subject has two potential outcomes yi(1) and yi(0). We observe Yi = yi(1) if sub-
ject i is assigned to the treatment arm T , and Yi = yi(0) if subject i is assigned to the
control arm C. Let Di be a binary variable, where Di = 1 indicates that subject i is as-
signed to the treatment arm.

1Compared with Lei and Ding (2021) and Chiang, Matsushita, and Otsu (2023), we add to the literature by
proposing exactly unbiased estimators for both interacted and noninteracted estimators.

2We thank Winston Lin for suggesting this reference.
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The experiment is assumed to be completely randomized, where nT out of n subjects
are randomly assigned to the treatment arm T and the remaining nC = n − nT subjects
are assigned to the control arm C. Random assignment is the sole source of randomness
in our statistical analysis. The potential outcomes and covariates are considered fixed,
and the bias of an estimator is assessed relative to the randomization distribution of the
estimator. We do not assume the existence of a superpopulation: the n subjects are the
population of interest.

We define [T ] as the set of subjects chosen for the treatment arm, given by {i|Di = 1},
and similarly [C] as the set of subjects chosen for the control arm, given by {i|Di = 0}.
For a possibly matrix-valued variable ai, we use the notation ā = 1

n

∑n

i=1 ai to repre-
sent the population average, āT = 1

nT

∑
i∈[T ]

ai to denote the treatment group average, and

āC = 1
nC

∑
i∈[C]

ai to denote the control group average. The average treatment effect (ATE)

can be expressed in this notation as ATE = y(1) − y(0), and the difference-in-means es-
timator is given by YT − YC . Similarly, we can write 1

n

∑n

i=1 xix
′
i = xx′ for xi ∈ Rd and

1
n

∑n

i=1 yi(1)xi = y(1)x for yi(1) ∈ R and xi ∈ Rd .
We make the following assumptions throughout the paper, which are standard in the

literature.

ASSUMPTION 1: For all n, there exists a finite constant K such that

1
n

n∑
i=1

yi(1)2 ≤ K�
1
n

n∑
i=1

yi(0)2 ≤K�
1
n

n∑
i=1

x2
ik ≤K�

for all k= 1� � � � � d and d ≤ n.

ASSUMPTION 2: For all n large enough, (1) x = 0, and (2) xx′ = Id , the d × d identity
matrix.

ASSUMPTION 3: Let pT�n = nT
n

and pC�n = n−nT
n

denote the inclusion probabilities into the
treatment arm T and control arm C, respectively. There exist positive constants pmin and pmax

such that 0 <pmin <pmax < 1 and pmin <pT�n < pmax for all n.

These assumptions are employed regularly in the literature. They are used to derive
consistency and the rate of convergence for the estimators below. Assumption 2 rules
out perfect collinearity. For data sets that are not perfectly collinear, Assumption 2 is
without loss of generality: in practice, researchers can just demean each covariate and
orthonormalize the columns.3 Assumption 3 requires each arm to receive a nontrivial
fraction of subjects throughout the asymptotic sequence of the models. We shall hereafter
omit the n subscript in pT�n and pC�n, and write pT and pC unless otherwise noted.

We define two regression-adjusted ATE estimators for reference. The first estimator
results from a OLS regression:

Yi ∼ α+ τDi + x′
iβ� (1)

3For example, assuming the covariate matrix has full column rank, one can use the procedure proposed in
Lei and Ding (2021). We denote the SVD decomposition of the centered covariate matrix by X =U�V ∈Rn×d ,
where U ∈Rn×d , and ��V ∈Rd×d . One can replace the covariate matrix X with

√
nU .
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where one regresses observed outcome Yi on the treatment indicator Di and covariates
xi. We denote the OLS estimators for this case as (̂α� τ̂� β̂). The estimator τ̂ is hereafter
referred to as the noninteracted ATE estimator.

The second estimator results from an interacted OLS regression where researchers ex-
pand the covariates by including terms interacting the treatment indicator and covariates:

Yi ∼ αI + τIDi + x′
iβI�C +Dix

′
iβI�T � (2)

We denote the OLS estimators for the interacted case as (̂αI� τ̂I� β̂I�C� β̂I�T ). The estimator
τ̂I is hereafter referred to as the interacted ATE estimator.

3. BIAS CHARACTERIZATION AND CORRECTION FOR THE NONINTERACTED CASE

We characterize the bias of the noninteracted ATE estimator and present a bias-
corrected estimator in this section. Section 4 contains results for the interacted ATE esti-
mator.

As shown in Lin (2013), the noninteracted ATE estimator can be written as

ÂTE = y(1)T − y(0)C − (x′
T β̂− x′

Cβ̂
)
� (3)

where β̂ is the OLS coefficient estimators for the covariates. The noninteracted ATE es-
timator can be written as a sum of the difference-in-means estimator, adjusted by group
means and OLS coefficients. The bias can be viewed as coming from the regression ad-
justment term, particularly from estimating the coefficients for the covariates.

The coefficient estimators β̂ can be algebraically written as β̂ = L̂−1N̂ , where L̂ =
Id − pTxTx

′
T − pCxCx

′
C and N̂ = pT (y(1)xT − y(1)TxT ) + pC (y(0)xC − y(0)CxC) by an

application of the Frisch–Waugh–Lovell theorem. The matrix L̂ consists of the variance-
covariance matrix of the covariates and two additional stochastic terms that converge to
0 as the sample size increases. The vector N̂ is a weighted average of sample covariances
between covariates and potential outcomes.

The OLS coefficient estimators can be thought of as estimating the (finite) population
coefficients β∗ = L−1N , where L = Id and N = pTy(1)x + pCy(0)x. Note that Id does
not involve unknowns, so in principle one does not need to estimate it with L̂. This view
suggests that the randomness (bias) of L̂ can be entirely avoided if we replace L̂ with
L when estimating β∗. With this replacement, the regression adjustments in (3) can be
written as x′

T N̂ − x′
CN̂ . The remaining bias can be characterized by analyzing quantities

of forms x′
T y(1)xT and x′

TxT y(1)T , which can be seen in the theorem below.4

Let y∗
i (1) and y∗

i (0) be the centered potential outcomes, that is, y∗
i (1) = yi(1) − y(1)

and y∗
i (0) = yi(0) − y(0). Denote the (rescaled) leverage of the ith subject as hi = ‖xi‖2

2.
As in Lei and Ding (2021), we define the maximum leverage as

κ = max
i=1�����n

hi

n
= max

i=1�����n

‖xi‖2
2

n
� (4)

Our first theorem characterizes the bias of the noninteracted ATE estimator.

4Note we shall hereafter assume for simplicity that all design matrices, L̂, are invertible. In the case of
noninvertible design matrices, our debiased procedure will still work after choosing an arbitrary generalized
inverse matrix and computing the ATE estimators accordingly.
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THEOREM 3.1: Under Assumptions 1–3, the OLS coefficient estimators for the covariates,
β̂, can be decomposed as β̂= β∗ + ν1 + ν2 + ν3 with

ν1 = pT (y∗(1)xT − y∗(1)x) +pC (y∗(0)xC − y∗(0)x)�

ν2 = (L̂−1 − I−1
d

)
N̂�

ν3 = −(pTy∗(1)TxT +pCy∗(0)CxC)�

The bias of the ÂTE estimator is E[(xC − xT )′(ν1 + ν2 + ν3)], where

E
[
(xC − xT )′ν1

]= 1
n− 1

(hy(0) − h× y(0)) − 1
n− 1

(hy(1) − h× y(1)) (5)

and

E
[
(xC − xT )′ν3

]
= nC − nT

(n− 1)(n− 2)nT

(hy(1) − h× y(1)) − nT − nC

(n− 1)(n− 2)nC

(hy(0) − h× y(0))�
(6)

If d
n

= o(1), we have the stochastic expansion

ÂTE = ATE + 1
nT

∑
i∈[T ]

(
yi(1) − y(1) − x′

iβ
∗)− 1

nC

∑
i∈[C]

(
yi(0) − y(0) − x′

iβ
∗)+Op

(√
κd

n

)
�

REMARK 1: The first bias term (5) is the main component of the bias. It is the scaled
covariance between the leverage hi and individual effects yi(1) − yi(0). Note that the
formula suggests that the first bias term is 0 when the treatment effect is additive, for
example, if there is no treatment effect on all subjects. However, a large bias may result
from the presence of highly heterogeneous effects. The third term E[(xC − xT )′ν3] is 0
when nT = nC = 1

2n. See also Freedman (2008b) and Lin (2013).

REMARK 2: The bias in E[(xC − xT )′v2] has been discussed previously. (xC − xT )′v2

contains no unknowns and hence can be subtracted directly for debiasing purposes.
The first bias component (5) consists of covariances of leverages and outcomes. For

intuition, consider a simple problem of estimating the average centered treated outcomes
with a centered and standardized one-dimensional covariate.5 Recall the definition of the
constant xy∗(1) = 1

n

n∑
i=1

xiy
∗
i (1). We consider a simple adjusted estimator of the form

1
nT

∑
i∈[T ]

y∗
i (1) − xT ×

(
1
nT

∑
i∈[T ]

xiy
∗
i (1)

)

= 1
nT

∑
i∈[T ]

y∗
i (1) − xT × xy∗(1) − xT ×

(
1
nT

∑
i∈[T ]

(
xiy

∗
i (1) − xy∗(1)

))
�

5This example is only for illustration purposes as the average of the centered treatment outcomes is 0.
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The first two terms of the equation above have expectation 0, and the third term can be
further written as (up to a minus sign):

1
n2
T

nC

n− 1

∑
i∈[T ]

xi

(
xiy

∗
i (1) − xy∗(1)

)
+
(

1
n2
T

nT − 1
n− 1

∑
i∈[T ]

xi

(
xiy

∗
i (1) − xy∗(1)

)+ 1
n2
T

∑
i�j∈[T ]�i 	=j

xi

(
xjy

∗
j (1) − xy∗(1)

))
�

The term in the parentheses has mean 0. The weightings in the parenthesized term reflect
different values of E[Di] and E[DiDj]. The first term has expectation proportional to
1
n

n∑
i=1

x2
i y

∗
i (1). In this one-dimensional covariate case (and up to a scale factor), x2

i is exactly

the leverage. With multiple covariates, the leverage hi plays the role of x2
i .

The third bias component (6) can also be shown to be proportional to 1
n

n∑
i=1

x2
i y

∗
i (1).

This is a direct result of the third-moment calculations in simple random sampling, where

it can be shown that E[x1Tx1T y∗(1)T ] is proportional to 1
n

n∑
i=1

x2
i1y

∗
i (1). For this example,

we note that it is important for all three variables to have mean 0. For more details, see
Lemma A.2 and also Finucan, Galbraith, and Stone (1974).

Finally, some may find it redundant to center the outcomes when characterizing the
bias. However, this decomposition naturally yields an estimator of the bias that remains
invariant to the location of the potential outcome distributions, as can be seen below. The
bias estimator essentially consists of the estimators of the covariances of leverages and
outcomes.

REMARK 3: Our current analysis accommodates the case where the number of covari-
ates d increases slowly with the sample size n, in the spirit of Lei and Ding (2021).6 If, in
addition, we assume d is fixed and with additional moment assumptions, it can be shown
that the bias is of order O( 1

n
). See Lin (2013).

Our bias characterization leads to a formula for exact bias correction.7

THEOREM 3.2: Under Assumption 2, an unbiased estimator for the bias of the noninter-
acted ATE estimator is

B̂ias = 1
n− 2

(hy(0)C − hCy(0)C) − 1
n− 2

(hy(1)T − hTy(1)T ) (7)

+ (xC − xT )′(L̂−1 − I−1
d

)
N̂� (8)

6We note that Assumption 1 on treated and control outcomes implies constraints on the magnitude of the
values of the associated coefficient vector (e.g., sparsity) when d increases with n.

7We thank an anonymous referee for suggesting a simplification of our initial bias correction formula.
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The estimator ÂTEDebiased = ÂTE − B̂ias is unbiased for estimating the ATE. Under Assump-
tions 1–3 and if κ = o(1), the estimator ÂTEDebiased has the asymptotic linear expansion

ÂTEDebiased = ATE + 1
nT

∑
i∈[T ]

(
yi(1) − y(1) − x′

iβ
∗)

− 1
nC

∑
i∈[C]

(
yi(0) − y(0) − x′

iβ
∗)+ op

(√
1
n

)
�

REMARK 4: Lei and Ding (2021) gave low-level conditions for κ = o(1). In particular,
κ = o(1) if d is fixed and 1

n

∑d

k=1

∑n

i=1 x
4
ik = O(1). See also Lin (2013).

REMARK 5: There exist prior closed-form bias estimates in the literature, including
Cochran (1977), Lin (2013), Tan (2014), and Lei and Ding (2021). Most bias correction
estimators are for the interacted ATE estimator and involve estimating the covariances
between regression residuals and leverages, as in Tan (2014) and Lei and Ding (2021). To
our knowledge, none of the aforementioned papers provide an exactly unbiased correc-
tion for RCTs.

4. BIAS CHARACTERIZATION AND CORRECTION FOR THE INTERACTED CASE

We write the regression coefficient estimators of the pretreatment covariates in the
interacted case as β̂I�T = L̂−1

T N̂T and β̂I�C = L̂−1
C N̂C , and their (finite) population counter-

parts as βI�T = I−1
d NT and βI�C = I−1

d NC , with L̂T = xx′
T − xTx

′
T , N̂T = y(1)xT − y(1)TxT ,

L̂C = xx′
C − xCx

′
C , N̂C = y(0)xC − y(0)CxC , NT = y(1)x, and NC = y(0)x.

As shown in Lin (2013), the OLS regression-adjusted ATE estimator can be written as

ÂTEI = y(1)T − y(0)C − (x′
T β̂I�T − x′

Cβ̂I�C

)
for the interacted case, where β̂I�T and β̂I�C are the OLS coefficients on covariates Dixi

and xi, repsectively.

THEOREM 4.1: Under Assumptions 1–3, the OLS coefficient vectors for the covariates of
the interacted ATE estimator can be written as β̂I�T = βI�T + ν1T + ν2T + ν3T , and β̂I�C =
βI�C + ν1C + ν2C + ν3C , with

ν1T = y∗(1)xT − y∗(1)x� ν2T = (L̂−1
T − I−1

d

)
N̂T � ν3T = −(xTy∗(1)T )�

ν1C = y∗(0)xC − y∗(0)x� ν2C = (L̂−1
C − I−1

d

)
N̂C� ν3C = −(xCy∗(0)C)�

The bias of the ÂTEI estimator is E[ÂTEI − ATE] = E[x′
C (ν1C + ν2C + ν3C)] −E[x′

T (ν1T +
ν2T + ν3T )]. We have

E
[
x′
Cν1C

]−E
[
x′
T ν1T

]= nT

(n− 1)nC

(hy(0) − h× y(0)) − nC

(n− 1)nT

(hy(1) − h× y(1))�

E
[
x′
Cν3C

]−E
[
x′
T ν3T

]
= nT (nT − nC)

(n− 1)(n− 2)n2
C

(hy(0) − h× y(0)) − nC (nC − nT )
(n− 1)(n− 2)n2

T

(hy(1) − h× y(1))�
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If κ logd = o(1),8

ÂTEI = ATE + 1
nT

∑
i∈[T ]

(
yi(1) − y(1) − x′

iβI�T

)− 1
nC

∑
i∈[C]

(
yi(0) − y(0) − x′

iβI�C

)
+Op

(√
κd

n

)
�

THEOREM 4.2: Under Assumption 2, an unbiased estimator for the bias of the interacted
ATE estimator is

B̂iasI = nT

(n− 2)nC

(hy(0)C − hCy(0)C) + x′
C

(
L̂−1

C − I−1
d

)
N̂C

− nC

(n− 2)nT

(hy(1)T − hTy(1)T ) − x′
T

(
L̂−1

T − I−1
d

)
N̂T �

The estimator ÂTEI�Debiased = ÂTEI − B̂iasI is unbiased for estimating the ATE. Under As-
sumptions 1–3 and κ = o(1), the estimator ÂTEI�Debiased has the asymptotic linear expansion

ÂTEI�Debiased = y(1) − y(0) + 1
nT

∑
i∈[T ]

(
yi(1) − y(1) − x′

iβI�T

)
− 1

nC

∑
i∈[C]

(
yi(0) − y(0) − x′

iβI�C

)+ op

(√
1
n

)
�

APPENDIX A: PROOFS

A.1. Constants

We define the following three constants:

NTTT = (n− nT )(n− 2nT )
(n− 1)(n− 2)n2

T

= nC (nC − nT )
(n− 1)(n− 2)n2

T

�

NCCC = (n− nC)(n− 2nC)
(n− 1)(n− 2)n2

C

= nT (nT − nC)
(n− 1)(n− 2)n2

C

�

NTTC = − (n− 2nT )
(n− 1)(n− 2)nT

= nT − nC

(n− 1)(n− 2)nT

�

A.2. Auxiliary Lemmas

Let a = (a1� � � � � an) ∈ Rn and b = (b1� � � � � bn) ∈ Rn be arbitrary n-vectors with fixed
elements. We define the covariance estimator for the treated group as ĈovT (a�b) =
abT − aTbT , and similarly for the control group as ĈovC (a�b) = abC − aCbC . The fol-
lowing lemma characterizes the mean and variance of these covariance estimators.

8The upper bound on the stochastic order of the bias of the interacted case is characterized in equation (15)
in Lei and Ding (2021).
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LEMMA A.1: Let t ∈{T�C} and n ≥ 4. Then,

E
[
Ĉovt (a�b)

]= (nt − 1)n
nt (n− 1)

(ab− ab)�

Var
(
Ĉovt (a�b)

)≤ 2(n− nt)
nt (n− 1)

1
n

n∑
i=1

(aibi − ab)2 + 2(n− nt)n
n3
t (n− 1)

1
n

n∑
i=1

a2
i × 1

n

n∑
i=1

b2
i �

PROOF: We will prove the case for the treated group. The proof for the control group
case is analogous. To begin, we have

E[abT − aTbT ] = E
[

1
2n2

T

∑
i�j∈[T ]

(ai − aj)(bi − bj)
]

= 1
2n2

T

nT (nT − 1)
n(n− 1)

∑
i 	=j

(ai − aj)(bi − bj)

= (nT − 1)n
nT (n− 1)

1
2n2

∑
i�j

(ai − aj)(bi − bj) = (nT − 1)n
nT (n− 1)

(ab− ab)�

To upper-bound the variance, we first note that the covariance estimator is location in-
variant and we can assume, without loss of generality, a= 0 and b= 0.9 We then have

Var(abT − aTbT ) ≤ 2 Var(abT ) + 2 Var(aTbT ) = 2 Var(abT ) + 2
n4
T

Var(
∑
i�j∈[T ]

aibj)

≤ 2(n− nT )
nT (n− 1)

1
n

n∑
i=1

(aibi − ab)2 + 2(n− nT )n
n3
T (n− 1)

1
n

n∑
i=1

a2
i

1
n

n∑
i=1

b2
i �

where the last inequality follows from the variance calculation of simple random sam-
plings (first term) and Lemma A.5 in Lei and Ding (2021) (second term). Q.E.D.

Let xi, yi, and zi be three possibly identical vectors such that x̄= ȳ = z̄ = 0.

LEMMA A.2: For n≥ 3,10

E[x̄T ȳT z̄T ] =NTTT
1
n

n∑
i=1

xiyizi and E[x̄T ȳT z̄C] =NTTC
1
n

n∑
i=1

xiyizi�

PROOF: We only prove the first equality. The second one can be proved analogously.
First, notice two useful equalities:

E

[
n∑

i=1

Dixiyi
∑
j 	=i

Djzj

]
=

n∑
i=1

∑
j 	=i

[DiDj]xiyizj = nT (nT − 1)
n(n− 1)

n∑
i=1

∑
j 	=i

xiyizj

= nT (nT − 1)
n(n− 1)

(
n∑

i=1

n∑
j=1

xiyizj −
n∑

i=1

xiyizi

)

9This is required by the conditions of Lemma A.5 in Lei and Ding (2021).
10We note the following equalities can also be derived using results in Finucan, Galbraith, and Stone (1974).
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= −nT (nT − 1)
n(n− 1)

n∑
i=1

xiyizi�

where the fourth equality uses the fact that
∑n

i=1 zi = 0. Also,

E

[
n∑

i=1

Dixi

∑
j 	=i

Djyj
∑
s /∈{i�j}

Dszs

]

=
n∑

i=1

∑
j 	=i

∑
s /∈{i�j}

E[DiDjDs]xiyjzs

= nT (nT − 1)(nT − 2)
n(n− 1)(n− 2)

n∑
i=1

∑
j 	=i

∑
s /∈{i�j}

xiyjzs

= nT (nT − 1)(nT − 2)
n(n− 1)(n− 2)

(
n∑

i=1

∑
j 	=i

n∑
s=1

xiyjzs −
n∑

i=1

∑
j 	=i

xiyj(zi + zj)

)

= nT (nT − 1)(nT − 2)
n(n− 1)(n− 2)

(
−

n∑
i=1

n∑
j=1

xiyj(zi + zj) + 2
n∑

i=1

xiyizi

)

= 2nT (nT − 1)(nT − 2)
n(n− 1)(n− 2)

n∑
i=1

xiyizi�

where the fourth and fifth equality use
∑n

i=1 xi =∑n

i=1 yi =
∑n

i=1 zi = 0. Finally,

E[x̄T ȳT z̄T ] = 1
n3
T

(
E
[∑

i

Dixiyizi

]
+ E

[
n∑

i=1

∑
j 	=i

DiDj(xiyizj + xiyjzi + xjyizi)

]

+ E

[
N∑
i=1

Dixi

∑
j 	=i

Djyj
∑
s /∈{i�j}

Dszs

])

= 1
n3
T

(
nT

n
− 3nT (nT − 1)

n(n− 1)
+ 2nT (nT − 1)(nT − 2)

n(n− 1)(n− 2)

) n∑
i=1

xiyizi�

where, for the last equality, we apply the previous two equalities. Simplifying the coeffi-
cients gives 1

n
NTTT. Q.E.D.

APPENDIX B: PROOF OF THE MAIN THEOREMS

B.1. Proof of Theorem 3.1

By the Frisch–Waugh–Lovell theorem, the OLS estimate of the coefficient on the co-
variates can be written as β̂ = L̂−1N̂ , where

N̂ = pT (y(1)xT − y(1)TxT ) +pC (y(0)xC − y(0)CxC)

= pT (y∗(1)xT − y∗(1)TxT ) +pC (y∗(0)xC − y∗(0)CxC)
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=N +pT (y∗(1)xT − y∗(1)x) +pC (y∗(0)xC − y∗(0)x) −pTy∗(1)TxT −pCy∗(0)CxC

and L̂= Id −pTxTx
′
T −pCxCx

′
C .

We have the following decomposition:

β̂=N +pT (y∗(1)xT − y∗(1)x) +pC (y∗(0)xC − y∗(0)x) −pTy∗(1)TxT

−pCy∗(0)CxC + (L̂−1 − I−1
d

)
N̂�

As a result, E[ÂTE − ATE] = E[(xC − xT )′β̂] = E[(xC − xT )′β̂− (xC − xT )′β∗], where we
used the fact E[xT ] = E[xC] = 0. See the proof of Theorem 3.2 for the characterization of
the bias.

B.1.1. Stochastic Orders of the Bias of the Noninteracted ATE Estimator

Let (α∗� τ∗�β∗) be the minimizer of the criterion pT

n∑
i=1

(yi(1) − α − τ − x′
iβ)2 +

pC

n∑
i=1

(yi(0) − α− x′
iβ)2. Some calculation shows that

⎡⎣α∗

τ∗

β∗

⎤⎦=

⎛⎜⎜⎜⎜⎝
⎡⎣ 1 pT 01×d

pT pT 01×d

0d×1 0d×1 Id

⎤⎦
︸ ︷︷ ︸

O

⎞⎟⎟⎟⎟⎠
−1⎡⎣ pTy(1) +pCy(0)

pTy(1)
pTy(1)x+pCy(0)x

⎤⎦ � (9)

Define ei(1) = yi(1) − α∗ − τ∗ − x′
iβ

∗ and ei(0) = yi(0) − α∗ − x′
iβ

∗. Note pT
1
n

n∑
i=1

(yi(1) −

α∗ −τ∗ −x′
iβ

∗)2 +pC
1
n

n∑
i=1

(yi(0) −α∗ −x′
iβ

∗)2 ≤ pT
1
n

n∑
i=1

y2
i (1) +pC

1
n

n∑
i=1

yi(0)2 by definition.

We thus have 1
n

n∑
i=1

e2
i (1) = O(1) and 1

n

n∑
i=1

e2
i (0) = O(1) by Assumption 1 and Assump-

tion 3. We can represent the observed outcome as Yi = α∗ + τ∗Di + x′
iβ

∗ + ei(Di). Some
manipulation shows that the OLS estimator has the following representation:

⎡⎣α̂τ̂
β̂

⎤⎦−
⎡⎣α∗

τ∗

β∗

⎤⎦=

⎛⎜⎜⎜⎜⎜⎝
⎡⎣ 1 pT 01×d

pT pT pTx
′
T

0d×1 pTxT Id

⎤⎦
︸ ︷︷ ︸

Ô

⎞⎟⎟⎟⎟⎟⎠
−1

1
n

n∑
i=1

⎡⎣ 1
Di

xi

⎤⎦ei(Di)� (10)

Define x̃i = (1�Di�xi)′ and xo
i = (0�0�xi)′. We have the decomposition

(xT − xC)′(β̂−β∗) = (xT − xC)′ 1
n

n∑
i=1

xiei(Di)︸ ︷︷ ︸
(∗)

+ (xo
T − xo

C

)′(
Ô−1 −O−1

)1
n

n∑
i=1

x̃iei(Di)︸ ︷︷ ︸
(∗∗)

�
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Note xT − xC = 1
pC
xT . We bound the stochastic order of (∗):

1
pC

x′
T

(
1
n

∑
i∈[T ]

xi

(
ei(1) − ei(0)

)+ 1
n

n∑
i=1

xiei(0)
)

= 1
pC

x′
T

(
1
n

∑
i∈[T ]

(
xi

(
ei(1) − ei(0)

)+ 1
pT

1
n

n∑
i=1

xiei(0)
))

)

= 1
pC

x′
T

(
1
n

∑
i∈[T ]

(
xi

(
ei(1) − ei(0)

)− 1
n

n∑
i=1

xi

(
ei(1) − ei(0)

)))
�

where, for the second equality, we use the fact that pT

n∑
i=1

xiei(1)+pC

n∑
i=1

xiei(0) = 0 implies
n∑

i=1
xi(ei(1) − ei(0)) = − 1

pT

n∑
i=1

xiei(0).

By Lemma A.5 in Lei and Ding (2021), the first moment can be upper-bounded as

E
[
(∗)
]= E

[
1
pC

x′
T

1
n

∑
i∈[T ]

xi

(
ei(1) − ei(0)

)]= 1
pCnnT

E
[∑
i∈[T ]

∑
j∈[T ]

x′
ixj

(
ej(1) − ej(0)

)]
= 1

pCnnT

nTnC

n(n− 1)

∑
i

‖xi‖2
2

(
ei(1) − ei(0)

)=O

(
1
n

n∑
i=1

n−1‖xi‖2
2

(
ei(1) − ei(0)

))

≤O

(√
κd

n

)
�

by Assumption 1 and an argument similar to (15) in Lei and Ding (2021). By Lemma A.5
in Lei and Ding (2021), the variance can be upper-bounded as

Var
[
(∗)
]≤ ( 1

pCnTn

)2
nTnC

n(n− 1)

∑
i�j

(
x′
i

(
xj

(
ej(1) − ej(0)

)− 1
n

n∑
i=1

xi

(
ei(1) − ei(0)

)))2

≤
(

1
pCnTn

)2
nTnC

n(n− 1)

∑
i�j

(
x′
ixj

(
ej(1) − ej(0)

))2

=
(

1
pCnTn

)2

n2 nTnC

n(n− 1)

∑
i

n−1‖xi‖2
2

(
ej(1) − ej(0)

)2 =O

(
κ

n

)
�

where, for the second inequality, we use the fact that, for each xi, 1
n

∑
j

(x′
ixj(ej(1) −

ej(0)))2 ≥ 1
n

∑
j

(x′
i(xj(ej(1) − ej(0)) − 1

n

n∑
j=1

xj(ej(1) − ej(0))))2. For the second to last

equality, we use the fact
∑

i�j(x
′
ixjaj)2 =∑j a

2
j x

′
j(
∑

i xix
′
i)xj = n

∑
j a

2
j‖xj‖2

2 by Assump-

tion 2. Thus, the term (∗) is of order Op(
√

κd
n

).
Regarding the term (∗∗), we note the eigenvalues of the matrix O are uniformly

bounded above and below by Assumption 3. Let ||| ·|||2 be the matrix operator norm and
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‖ · ‖2 be the Frobenius norm. We have |||O − Ô|||2 ≤ ‖O − Ô‖2 =
√

2p2
T

d∑
k=1

( 1
nT

∑
i∈[T ]

xik)2 =

Op(
√

d
n
) by Assumption 1. Thus, |||O−1 − Ô−1|||2 = Op(

√
d
n
), if d

n
= o(1). A simple calcu-

lation shows that the term (∗∗) is of the order op(
√

κd
n

).

B.2. Proof of Theorem 3.2

PROOF: We first propose estimators for the bias E[(xC − xT )(ν1 + ν2 + ν3)]. Note, by
Assumption 2, (xC − xT ) = 1

pT
xC = − 1

pC
xT .

1. We first construct an estimator for E[(xC − xT )′ν1]. First notice:

E
[
(xC − xT )′ν1

]= 1
pT

E
[
x′
C

(
pT (y∗(1)xT − y∗(1)x) +pC (y∗(0)xC − y∗(0)x)

)]
= 1

n− 1

(
1
n

n∑
i=1

x′
ixiy

∗
i (0) − 1

n

n∑
i=1

x′
ixiy

∗
i (1)

)

= 1
n− 1

(hy(0) − h× y(0)) − 1
n− 1

(hy(1) − h× y(1))�

where the second equality follows from Proposition 1 from Freedman (2008b) and
Assumption 2. An unbiased estimator of this expression is

1
n− 1

(
nC (n− 1)
(nC − 1)n

(hy(0)C − hCy(0)C) − nT (n− 1)
(nT − 1)n

(hy(1)T − hTy(1)T )
)
� (11)

2. (xC − xT )′ν2 does not contain any unknown quantities, so it can be subtracted di-
rectly.

3. We now propose an estimator for E[(xC −xT )′ν3]. First notice, by a term-wise appli-
cation of Lemma A.2,

E
[
(xC − xT )′ν3

]= 1
pC

E
[
x′
TpTy∗(1)TxT

]+ 1
pC

E
[
x′
TpCy∗(0)CxC

]
= 1

pC

E
[
x′
TpTy∗(1)TxT

]− 1
pC

E
[
x′
TpTy∗(0)CxT

]
= pT

pC

NTTT
1
n

n∑
i=1

x′
ixiy

∗
i (1) − pT

pC

NTTC
1
n

n∑
i=1

x′
ixiy

∗
i (0)

= pT

pC

NTTT(hy(1) − h× y(1)) − pT

pC

NTTC(hy(0) − h× y(0))�

Notice this bias is of order O( κ
n
). An unbiased estimator for this quantity is

NTTTn
2
T (n− 1)

nC (nT − 1)n
(hy(1)T − hTy(1)T )

− NTTCnT (n− 1)
(nC − 1)n

(hy(0)C − hCy(0)C)� (12)
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Collecting the constants in front of hy(1)T − hTy(1)T gives

− 1
n− 1

nT (n− 1)
(nT − 1)n

+ nC (nC − nT )
(n− 1)(n− 2)n2

T

n2
T (n− 1)

nC (nT − 1)n
= n− nTn

(n− 2)(nT − 1)n
= − 1

n− 2
�

Collecting the constants in front of hy(0)C − hy(0)y(0)C gives

1
n− 1

nC (n− 1)
(nC − 1)n

− (nT − nC)
(n− 1)(n− 2)nT

nT (n− 1)
(nC − 1)n

= 1
n− 2

�

Collecting terms gives the expression in the main text.
Now we derive the stochastic expansion for the debiased estimator:

ÂTEDebiased

= (y(1)T − y(0)C − (xT − xC)L̂−1N̂
)− (xC − xT )′(L̂−1 − I−1

d

)
N̂

+ 1
n− 2

(hy(1)T − hTy(1)T ) − 1
n− 2

(hy(0)C − hCy(0)C)

= 1
nT

∑
i∈[T ]

(
yi(1) − x′

iN
)− 1

nC

∑
i∈[T ]

(
yi(0) − x′

iN
)

− (xT − xC)′(N̂ −N) + 1
n− 2

(hy(1)T − hTy(1)T ) − 1
n− 2

(hy(0)C − hCy(0)C)︸ ︷︷ ︸
(∗)

�

We now bound the stochastic orders of the terms. The term (∗) can be decomposed as

(xC − xT )′(pT (y(1)xT − y(1)TxT − y(1)x) +pC (y(0)xC − y(0)CxC − y(0)x)
)

+ 1
n− 2

(hy(1)T − hTy(1)T ) − 1
n− 2

(hy(0)C − hCy(0)C)

= −pT

pC

x′
T (y∗(1)xT − y∗(1)TxT − y∗(1)x) + pC

pT

x′
C (y∗(0)xC − y∗(0)CxC − y∗(0)x)

+ 1
n− 2

(hy(1)T − hTy(1)T ) − 1
n− 2

(hy(0)C − hCy(0)C)

= −pT

pC

x′
T (y∗(1)xT − y∗(1)x) + pC

pT

x′
C (y∗(0)xC − y∗(0)x) − (11)

+ pT

pC

x′
T y

∗(1)TxT − pC

pT

x′
Cy

∗(0)CxC − (12) = Op

(√
κ

n

)
�

by the stochastic order estimates below and the fact that κ ∈ [ d
n
�1].

We now derive the stochastic order estimates for terms of the treated group. The
stochastic order estimates for terms of the control group can be calculated analogously.

1. Since the first-order term in x′
T (y∗(1)xT − y∗(1)x) is canceled, we only need to char-

acterize the variance of the term x′
T (y∗(1)xT − y∗(1)x). By Assumption 1, Assump-
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tion 3, Lemma A.5, and (B.6) in Lei and Ding (2021), we have

Var
(
x′
T (y∗(1)xT − y∗(1)x)

)
= 1

n4
T

Var
(∑
i�j∈[T ]

x′
i

(
xjy

∗
j (1) − y∗(1)x

))
≤ 1

n4
T

nTnC

n(n− 1)

∑
i�j

(
x′
i

(
xjy

∗
j (1) − y∗(1)x

))2 ≤ 1
n4
T

nTnC

n(n− 1)

∑
i�j

(
x′
ixjy

∗
j (1)

)2

= n2

n4
T

nTnC

n(n− 1)

∑
i�j

(
n−1x′

ixj

)2
y∗
j (1)2 = n2

n4
T

nTnC

n(n− 1)

∑
j

n−1‖xj‖2
2y

∗
j (1)2

=O

(
κ

n

)
�

where, for the second inequality, we use the fact that, for each xi, 1
n

∑
j

(x′
ixjy

∗
j (1) −

x′
iy(1)x)2 ≤ 1

n

∑
j

(x′
ixjy

∗
j (1))2.

2. Since the first-order term in (11) is canceled, we characterize the variance of the
form 1

n
(hy(1)T − hTy(1)T ). First notice, by Lemma A.1 and Assumption 1,

Var
[
(hy(1)T − hTy(1)T )

]
≤ 2(n− nT )

nT (n− 1)
1
n

n∑
i=1

(
hiyi(1) − hy(1)

)2 + 2(n− nT )n
n3
T (n− 1)

1
n

n∑
i=1

y2
i (1)

1
n

n∑
i=1

h2
i

≤ 2(n− nT )
nT (n− 1)

1
n

n∑
i=1

h2
i y

2
i (1) + 2(n− nT )n

n3
T (n− 1)

1
n

n∑
i=1

y2
i (1)

1
n

n∑
i=1

h2
i

≤ 2(n− nT )
nT (n− 1)

n2κ2 1
n

n∑
i=1

y2
i (1) + 2(n− nT )n

n3
T (n− 1)

1
n

n∑
i=1

y2
i (1)

1
n

n∑
i=1

hi × nκ

= O

(
κ2n+ κd

n

)
�

Thus, Var( 1
n
(hy(1)T − hTy(1)T )) = O( κ2

n
+ κd

n3 ).
3. The stochastic order of the term y∗(1)Tx

′
TxT is Op( d

n1�5 ). The stochastic order of the

term in (12) is O( κ
n

+
√

κ2

n3 +
√

κd
n5 ).

We find that the dominant term is of order Op(
√

κ
n
).

On Remark 4, note that κ = maxi
‖xi‖2

2
n

≤ 1
n

√∑n

i=1 ‖xi‖4
2 = O(

√
d
n
), as in Proposi-

tion 1 of Wu and Ding (2021). Q.E.D.

B.3. Proof of Theorem 4.1

The decomposition of the bias is similar to the one in Theorem 3.1. We omit the details.
The stochastic order of the bias is derived in Lei and Ding (2021).
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B.4. Proof of Theorem 4.2

We derive the unbiased estimator and the stochastic expansion for the treated group.
We first propose estimators for the bias E[−x′

T (ν1T + ν2T + ν3T )]. Derivation and charac-
terization for the control group are analogous:

E
[−x′

T (ν1T + ν2T + ν3T )
]

= −(E[x′
T

(
L̂−1

T − I−1
d

)
N̂T

]+ E
[
x′
T (y∗(1)xT − y∗(1)x)

]−E
[
x′
TxT y∗(1)T

])
�

1. The term x′
T (L̂−1

T − I−1
d )N̂T does not contain any unknown quantities, so it can be

subtracted directly for debiasing.
2. An unbiased estimator for the second term E[x′

T (y∗(1)xT − y∗(1)x)] can be derived
in the same way as the first term in the noninteracted case, which gives

nC

n(nT − 1)
(hy(1)T − hTy(1)T )�

3. An unbiased estimator for the third term E[x′
TxT y∗(1)T ] can be derived in the same

way as the third term in the noninteracted case, which gives

NTTT
nT (n− 1)
(nT − 1)n

(hy(1)T − hTy(1)T )�

Collecting the constants in front of (hy(1)T − hTy(1)T ) gives

nC

n(nT − 1)
− (n− nT )(n− 2nT )

(n− 1)(n− 2)n2
T

× nT (n− 1)
(nT − 1)n

= nC

(n− 2)nT

�

Thus, an unbiased estimator for E[−x′
T (ν1T + ν2T + ν3T )] is

− nC

(n− 2)nT

(hy(1)T − hTy(1)T ) − x′
T

(
L̂−1

T − I−1
d

)
N̂T �

Similarly, an unbiased estimator for E[x′
C (ν1C + ν2C + ν3C)] is

nT

(n− 2)nC

(hy(0)C − hCy(0)C) + x′
C

(
L̂−1

T − I−1
d

)
N̂C�

We can characterize the stochastic expansion for the debiased estimator of the treated
group as

ÂTET�I�Debiased

= y(1)T − xT L̂
−1
T N̂T −

(
−x′

T

(
L̂−1

T − I−1
d

)
N̂T − nT

(n− 2)nC

(hy(1)T − hTy(1)T )
)

= y(1)T − xTNT − xT (N̂T −NT ) + nT

(n− 2)nC

(hy(1)T − hTy(1)T )

= y(1)T − xTNT +Op

(√
κ

n

)
�
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using the stochastic order estimates we derived in the proof of Theorem 4.1 and the fact
that κ ∈ [ d

n
�1].
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